

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Pure Mathematics P4 (WMA14) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P71381A Publications Code WMA14_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
 - 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
 - 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
 - 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
 - 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$
 $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. <u>Completing the square</u>

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question	Scheme	Marks	
1(a)	$A = \frac{1}{9}$	B1	
		(1)	
(b)	" 3^{-2} " $(1 + (-2)(\frac{kx}{3}) + \frac{(-2)(-3)}{2}(\frac{kx}{3})^2 +)$ or $x: 3^{-2}(-2)(\frac{k}{2})(=-\frac{2k}{27})$ and $x^2: 3^{-2}\frac{(-2)(-3)}{2}(\frac{k}{2})^2 = \frac{k^2}{27}$	B1	
	(3)(21) 2 (3) 21		
	$\frac{(-2)(-3)}{2}\left(\frac{k}{3}\right)^2 = 3 \times (-2)\left(\frac{k}{3}\right) \Longrightarrow \dots k^2 = \dots k$	M1	
	$k^2 + 6k = 0 *$	A1*	
		(3)	
(c)(i)	k = -6	B1	
(ii)	$3^{-2} \frac{(-2)(-3)(-4)}{3!} \left(\frac{"-6"}{3}\right)^3 = \frac{32}{9}$	M1A1	
		(3)	
		(7 marks)	
	Notes		
Mark parts (a) and (b) as a whole. (a) B1: $A = \frac{1}{9}$ (b) B1: Correct unsimplified coefficients for x and x^2 either in an expansion or separate for $(3 + kx)^{-2}$ or for			
$\left(1+\frac{k}{3}\right)^{-2}$ (accept the 3 ⁻² missing or incorrect). May be implied. Accept $B = -\frac{2k}{3}$ and $C = \frac{k^2}{3}$ if they forget			
the multiple outside. B0 if brackets on $\left\lfloor \frac{\kappa}{3} \right\rfloor$ missing unless implied by recovery.			
M1: Sets th in terms of	M1: Sets their coefficient of x^2 equal to 3 times their coefficient of x to produce a two term quadratic equation in terms of k.		
A1*: Achieves given answer from a correct equation, but condone if B and C both missed the 3^{-2} . May be			
scored if A was incorrect. (c)(i) B1: $k = -6$ only. The $k = 0$ solution must be rejected.			
(ii) M1: Substitutes their non-zero value for k into a correct expression for the coefficient of x^3 . Must include the 3^{-2}			
A1: $\frac{32}{9}$ or			

Question	Scheme	Marks
2(a)	$\left(\frac{1}{(1+3x)(1-x)} = \frac{A}{1+3x} + \frac{B}{1-x} \Rightarrow \right) 1 = A(1-x) + B(1+3x)$	B1
	when $x=1 \implies 1=4B \implies B=$ or when $x=-\frac{1}{3} \implies 1=\frac{4}{3}A \implies A=$	M1
	$\frac{3}{4(1+3x)} + \frac{1}{4(1-x)}$	A1
		(3)
(b)	$\int \cot y dy = \int \dots dx \Longrightarrow "\ln \sin y" = \int \dots dx$	M1
	$\dots = \int \left(\frac{3}{4(1+3x)} + \frac{1}{4(1-x)} \right) dx = \dots \ln(1+3x) \pm \dots \ln(1-x) (+c)$	M1
	$\ln \sin y = \frac{1}{4} \ln(1+3x) - \frac{1}{4} \ln(1-x) (+c) \text{oe}$	A1ft
	$\ln \sin\left(\frac{\pi}{2}\right) = \frac{1}{4}\ln\left(1 + 3 \times \frac{1}{2}\right) - \frac{1}{4}\ln\left(1 - \frac{1}{2}\right) + c \Longrightarrow c = \dots \left(= -\frac{1}{4}\ln 5\right)$	dM1
	$k \ln \sin y = m \ln() \Longrightarrow \sin^k y =^m$ or $k \ln \sin y = \Longrightarrow \sin^k y = \exp()$	M1
	$\sin^4 y = \frac{1+3x}{5(1-x)}$	A1
		(6)
		(9 marks)

Notes

(a)

B1: For a correct suitable identity without fractions, such as 1 = A(1-x) + B(1+3x), seen or implied.

M1: Attempts to find one of the constants by either substitution or equating coefficients. May be implied by a correct value for *A* or *B* via cover up rule.

A1: $\frac{3}{4(1+3x)} + \frac{1}{4(1-x)}$ oe allow values for *A* and *B* to be stated following a correct partial fraction form, or if

correct partial fractions see in (b).

(b)

M1: Attempts to separate variables to form $\cot y \frac{dy}{dx} = g(x)$ (oe for $\cot y$) and integrate $\cot y$. Accept any changed function for the attempt but must be attempting to integrate $\cot y$ (oe).

M1: Attempts to integrate their partial fractions from (a) so award for $\frac{...}{(1+3x)} \rightarrow ...\ln(1+3x)$ or $...\ln(4+12x)$

and
$$\frac{\dots}{(1-x)} \rightarrow \dots \ln(1-x)$$
 or $\dots \ln(4-4x)$ oe

- A1ft: Correct expression (any equivalent) (both sides). Follow through on their constants for the partial fractions. Condone the absence of the constant of integration.
- **dM1:** Depends on second M, and must have attempted to integrate both sides. Uses the initial conditions in an equation with a constant of integration. May integrate between limits to achieve this. (Accept if a value for *c* cannot be reached from their equation.)
- M1: Attempts to rearrange their equation by correctly using log work to reach the required form $\sin^n y = f(x)$. Must have had kln sin $y = \dots$ (k may be 1). Not dependent - may be gained before finding the constant if ln A is used, and allow if the constant is missing.

A1:
$$\sin^4 y = \frac{1+3x}{5(1-x)}$$
 (oe in correct form)

Question	Scheme	Marks	
3 (a)	$\frac{\mathrm{d}A}{\mathrm{d}t} = -0.5$	B 1	
	$A = \pi x^2 \Longrightarrow \frac{\mathrm{d}A}{\mathrm{d}x} = 2\pi x$	B1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = \frac{"-0.5"}{"2\pi x"} \qquad \left(=\frac{-1}{4\pi x}\right)$	M1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -0.011368$	A1cso	
		(4)	
(b)	$V = \pi x^2 (3x) = 3\pi x^3$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 9\pi x^2$	B1ft	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 9\pi x^2 \times "-\frac{1}{4\pi x}" (=-2.25x)$	M1	
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right) = -9 \implies (\text{Rate of decrease} =) 9 \ \left(\mathrm{mm^3 \ s^{-1}}\right)$	A1	
		(4)	
		(8 marks)	
	Notes		
(a)	4		
B1: $\frac{d}{d}$	$\frac{4}{t} = -0.5$ seen or implied from working		
B1: $\frac{d}{d}$	$\frac{A}{r} = 2\pi x$ seen or implied from working. Must be in terms of x, but allow recovery if in te	erms of <i>r</i> and	
later work uses $r = 7$ to achieve a solution.			
M1: A	tempts to use an appropriate chain rule with their $\frac{dA}{dt}$ and $\frac{dA}{dx}$ e.g. $\frac{dx}{dt} = \frac{dA}{dt} \div \frac{dA}{dx} = \dots$		
A1: av	A1: awrt -0.0114 or $-\frac{1}{28\pi}$ cso (must have the negative sign)		
(b)	20/		
B1: V	$=\pi x^2(3x)$ or $V = 3\pi x^3$		
B1ft: $\frac{d}{d}$	$\frac{V}{x} = 9\pi x^2$ or ft from their equation for V in one variable		
M1: Their $\frac{dV}{dx} \times \text{their } \frac{dx}{dt}$. Note the $\frac{dx}{dt}$ must be in terms of x or with $x = 4$ substituted first, M0 if they use			
their answ	er to (a).		
A1: (Rate of decrease =) 9 (mm ³ s ⁻¹) (with or without the negative sign). May be scored following			
$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.5$ in part (a)			

Question	Scheme	Marks
4(a)	$16x^3 - 9kx^2y + 8y^3 = 875$	
	$(8) y^3 \rightarrow (8 \times) 3 y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1
	$-9kx^2y \rightarrow \dots kxy \pm \dots -9kx^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	M1
	$48x^2 - 18kxy - 9kx^2 \frac{dy}{dx} + 24y^2 \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} (24y^2 - 9kx^2) = 18kxy - 48x^2 \Longrightarrow \frac{dy}{dx} = \dots$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6kxy - 16x^2}{8y^2 - 3kx^2} \qquad *$	A1*
		(4)
(b)	$\frac{dy}{dx} = 0, x = \frac{5}{2} \Rightarrow \frac{6k\left(\frac{5}{2}\right)y - 16\left(\frac{5}{2}\right)^2}{8y^2 - 3k\left(\frac{5}{2}\right)^2} = 0 \text{or}$ $x = \frac{5}{2} \Rightarrow 16\left(\frac{5}{2}\right)^3 - 9k\left(\frac{5}{2}\right)^2 y + 8y^3 = 875$	M1
	$15ky - 100 = 0$ or $250 - \frac{225}{4}ky + 8y^3 = 875$	A1
	E.g. $16\left(\frac{5}{2}\right)^3 - 9k\left(\frac{5}{2}\right)^2\left(\frac{20}{3k}\right) + 8\left(\frac{20}{3k}\right)^3 = 875 \Longrightarrow k^3 = \dots \left(=\frac{64}{27}\right) \Longrightarrow k = \dots$	M1
	$k = \frac{4}{3}$	A1
		(4) (8 marks)

	Notes	
(a)		
B1:	For $y^3 \rightarrow 3y^2 \frac{dy}{dx}$. Allow if seen in aside working without the 8.	
M1:	Correct attempt at implicit differentiation on the $-9kx^2y$. Look for $-9kx^2y \rightarrowkxy \pm 9kx^2\frac{dy}{dx}$	
M1:	Collects both of their $\frac{dy}{dx}$ terms together, collects non $\frac{dy}{dx}$ terms the other side of the equation, factorises	
	and divides to achieve $\frac{dy}{dx} = \dots$ Must have two $\frac{dy}{dx}$ terms, one from the attempt at differentiating $-9kx^2y$	
	and one from the attempt at differentiating y^3 , but condone if an extra $\frac{dy}{dx} =$ term has been included.	
A1*:	Achieves $\frac{dy}{dx} = \frac{6kxy - 16x^2}{8y^2 - 3kx^2}$ with no errors	
(b)		
M1:	Uses the information to produce one equation in k and y, e.g. sets the $\frac{dy}{dx}$ equal to 0 and substitutes $x = \frac{5}{2}$,	
	or substitutes $x = \frac{5}{2}$ into the given equation. Allow one slip substituting.	
A1:	A correct equation without fraction and with simplified coefficients, so $15ky - 100 = 0$ or	
	$250 - \frac{225}{4}ky + 8y^3 = 875 \text{ oe}$	
M1:	For a complete method to find k so solves the equations simultaneously to achieve a value for k. May find y first e.g substitutes their $k = \frac{20}{3y}$ into the original equation, solves to find y and substitutes this back into	
	$k = \frac{20}{3y}$ to find k via $250 - 375 + 8y^3 = 875 \Rightarrow y = 5 \Rightarrow k = \frac{20}{3 \times 5} = \dots$	
A1	$k = \frac{4}{3}$	
Alt:		
If the	y do not substitute $x = \frac{5}{2}$ initially then score	
M1: U	Uses numerator of $\frac{dy}{dx}$ equal to 0 to find y in terms of x and k and substitute into original equation (allowing	
one slip) A1: Correct equation:		
$6kxy - 16x^2 = 0 \Rightarrow y = \frac{8x^2}{3kx} \Rightarrow 16x^3 - 9kx^2 \left(\frac{8x^2}{3kx}\right) + 8\left(\frac{8x^2}{3kx}\right)^3 = 875 \text{ oe}$		
M1: Substitutes $x = \frac{5}{2}$ and solves to find k		
A1: $k = \frac{4}{3}$		

Question	Scheme	Marks	
5(a)	$1 = 2\sin u \Longrightarrow p = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$	B1	
	$x = 2\sin u \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = 2\cos u$ oe	M1	
	$\int \frac{3x+2}{\left(4-x^2\right)^{\frac{3}{2}}} dx = \int \frac{6\sin u+2}{\left(4-4\sin^2 u\right)^{\frac{3}{2}}} 2\cos u du = \int \frac{6\sin u+2}{\left(4\cos^2 u\right)^{\frac{3}{2}}} 2\cos u du$	M1	
	$= \int \frac{12\sin u}{8\cos^2 u} + \frac{2}{4\cos^2 u} \mathrm{d}u = \int_0^{\frac{\pi}{6}} \left(\frac{3}{2}\sec u\tan u + \frac{1}{2}\sec^2 u\right) \mathrm{d}u *$	A1*	
		(4)	
(b)	$\int \left(\frac{3}{2}\sec u \tan u + \frac{1}{2}\sec^2 u\right) du = \frac{3}{2}\sec u + \frac{1}{2}\tan u$	M1A1	
	$\left[\frac{3}{2}\sec u + \frac{1}{2}\tan u\right]_{0}^{\frac{\pi}{6}} = \left(\frac{3}{2}\sec\left(\frac{\pi}{6}\right) + \frac{1}{2}\tan\left(\frac{\pi}{6}\right)\right) - \left(\frac{3}{2}\sec 0 + \frac{1}{2}\tan 0\right) = \dots$	M1	
	$=\sqrt{3} + \frac{\sqrt{3}}{6} - \frac{3}{2} = \frac{7\sqrt{3}}{6} - \frac{3}{2} \left(= \frac{7\sqrt{3} - 9}{6} \right)$	A1	
		(4)	
		(8 marks)	
(-)	Notes		
(a) B1: p	$=\frac{\pi}{6}$ Allow if seen anywhere, even in (b). $p = 30$ is B0.		
M1: <i>x</i>	M1: $x = 2\sin u \Rightarrow \frac{dx}{du} = \pm \cos u$ or any rearrangement of this equation.		
M1: F	Ill substitution from an integral in terms of x to an integral in terms of u and uses the identities the identities of u and uses the identities of	tity	
si	$n^2 u + \cos^2 u = 1$ in the denominator. Do not be concerned with the limits for this mark.		
A1*: A	chieves given answer include du (with their p) with no errors and at least one intermediate	step with	
(b)	nai power simplified. Condone missing d <i>u</i> in intermediate mies.		
M1: 	$\left(\frac{3}{2}\sec u\tan u + \frac{1}{2}\sec^2 u\right) du =\sec u +\tan u$		
A1: $\frac{3}{2}$	$\sec u + \frac{1}{2} \tan u$ ignore any constant c		
M1: D ei in	Depends on having one term of the correct form, attempts to substitute in their $p (\neq 1)$ and 0, subtracting either way round. The substitution must be seen or clearly implied, e.g. by correct values for each term in an intermediate step before the answer (allowing missing 0's).		
A1: 7	$\frac{\sqrt{3}}{6} - \frac{3}{2}$ or exact equivalent eg $\frac{7\sqrt{3} - 9}{6}$ Allow if $p = 30^{\circ}$ was used.		

Question	Scheme	Marks
6(a)	$\overrightarrow{AB} = \begin{pmatrix} 5-1\\ 34\\ -2-3 \end{pmatrix} = \begin{pmatrix} 4\\ 7\\ -5 \end{pmatrix} = 4\mathbf{i} + 7\mathbf{j} - 5\mathbf{k}$	M1
	e.g. $\mathbf{r} = \mathbf{i} - 4\mathbf{j} + 3\mathbf{k} + \lambda(4\mathbf{i} + 7\mathbf{j} - 5\mathbf{k})$ or $\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \lambda(4\mathbf{i} + 7\mathbf{j} - 5\mathbf{k})$	M1A1
		(3)
(b)	$\overrightarrow{AC} = \begin{pmatrix} 3-1\\p4\\-1-3 \end{pmatrix} = \begin{pmatrix} 2\\p+4\\-4 \end{pmatrix} = 2\mathbf{i} + (p+4)\mathbf{j} - 4\mathbf{k}$	M1
	$\begin{pmatrix} 2\\p+4\\-4 \end{pmatrix} \begin{pmatrix} 4\\7\\-5 \end{pmatrix} = 8+7p+28+20=0 \Longrightarrow p=-8$	M1A1
		(3)
(c)	$ AB = \sqrt{4^2 + 7^2 + (-5)^2} = \sqrt{90}$ or $ AC = \sqrt{2^2 + (-4)^2 + (-4)^2} = 6$	M1
	Area $\frac{1}{2} \times "\sqrt{90} " \times "6" = 9\sqrt{10}$	dM1A1
		(3)
		(9 marks)
Notes		

Accept either vector form throughout but extra i, j k in column vectors will lose A mark in (a). (a) This is now being marked MMA

M1: Attempts to find \overrightarrow{AB} . Score for subtracting either way round. Implied by 2 out of 3 correct coordinates.

M1: Attempts equation for the line, score for $\overrightarrow{OA} + \lambda \times \text{their } \overrightarrow{AB}$ or $\overrightarrow{OB} + \lambda \times \text{their } \overrightarrow{AB}$ No need for $\mathbf{r} =$ for this mark.

A1: Any correct equation. Must be $\mathbf{r} = \dots (l = \dots \text{ is } A0)$

(b)

M1: Attempts to find \overrightarrow{AC} . Score for subtracting either way round. Implied by 2 out of 3 correct coordinates.

M1: Takes scalar product of their \overrightarrow{AB} and their \overrightarrow{AC} to form and solve a linear equation in p

A1: p = -8

(c)

M1: Attempts to find the magnitude of either their \overrightarrow{AB} or their \overrightarrow{AC} using their p

dM1: Attempts to find the exact area of the triangle *ABC*. It is dependent on the previous method mark. There $1 | \longrightarrow | | \longrightarrow |$

most common method will be $\frac{1}{2} \left| \overrightarrow{AB} \right| \left| \overrightarrow{AC} \right|$ as in scheme but other methods are possible. E.g.

$$\cos \angle ABC = \frac{BA.BC}{\left|\overrightarrow{BA}\right|\left|\overrightarrow{BC}\right|} \Rightarrow A = \frac{1}{2}\left|\overrightarrow{BA}\right|\left|\overrightarrow{BC}\right| \sin \angle ABC$$
. Such a method must be complete, including use of

Pythagorean identity to find sin $\angle ABC$. Other more advanced methods (such as cross products) are also possible. If you see something you feel is worthy of some credit but does not fit the scheme, send to Review. A1: $9\sqrt{10}$

Question	Scheme	Marks
7(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \cos t + 6\cos t\sin t \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t - 2\sin t$	B1B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{3\cos t - 2\sin t}{\cos t + 6\cos t\sin t} = \frac{3\cos \pi - 2\sin \pi}{\cos \pi + 6\cos \pi\sin \pi} = 3 *$	M1A1*
		(4)
(b)	When $t = \pi$, $x = -3$, $y = -2$	B1
	y - " - 2" = 3(x - " - 3")	M1
	y = 3x + 7	A1
		(3)
(c)	$y = 3x + 7 \Rightarrow 3\sin t + 2\cos t = 3(\sin t - 3\cos^2 t) + 7 \text{ or}$ $y = 3(x + 3\cos^2 t) + 2\cos t \Rightarrow 3x + 7 = 3x + 9\cos^2 t + 2\cos t$	M1
	$y = 5(x + 5\cos t) + 2\cos t \Rightarrow 5x + t = 5x + 9\cos t + 2\cos t$	
	$\Rightarrow 9\cos^2 t + 2\cos t - 7 = 0 *$	A1*
		(2)
(d)	$\cos t = \frac{7}{9}$	B1
	$y = 3 \times \frac{\sqrt{32}}{9} + 2 \times \frac{7}{9} = \frac{4\sqrt{2}}{3} + \frac{14}{9}$	M1A1
		(3)
		(12 marks)
	Notes	
 B1: (^{dx}/_{dt} =) cost + 6cost sint or cost + 3 sin 2t B1: (^{dy}/_{dt} =) 3cost - 2sint M1: Attempts ^{dy}/_{dx} = ^{dy}/_{dt} × ^{dt}/_{dx} using their ^{dx}/_{dt} and their ^{dy}/_{dt} and substitutes t = π. (May substitute π before dividing.) A1*: Achieves ^{dy}/_{dx} = 3 with full working shown and no errors. (b) B1: x = -3, y = -2 which may be seen within their working M1: Attempts to find the equation of the tangent with gradient 3. If they use y = mx + c they must proceed as far as c = A1: y = 3x + 7 		
(c) M1: A full attempt to solve simultaneously the given parametric equations with their equation of the tangent A1*: Achieves $9\cos^2 t + 2\cos t - 7 = 0$ with no errors (d) B1: $\cos t = \frac{7}{9}$ seen or implied. Allow if seen in (c). M1: Attempts to find the <i>y</i> coordinate Must attempt to evaluate trig terms. If no substitution/working shown, then score for awrt 3.44 following a correct value for $\cos t$ A1: $\frac{4\sqrt{2}}{3} + \frac{14}{9}$ or exact equivalent. Withhold if additional answers are given.		

Question	Scheme	Marks	
8(a)	$V = \pi \int_{0}^{10} \left(10x e^{-\frac{1}{2}x} \right)^{2} dx =: 100\pi \int_{0}^{10} x^{2} e^{-x} dx$	M1;A1	
		(2)	
(b)	$\int x^2 e^{-x} dx = -x^2 e^{-x} + 2 \int x e^{-x} dx$	M1	
	$= -x^{2}e^{-x} + 2\int xe^{-x} dx = -x^{2}e^{-x} + 2\left\{-xe^{-x} + \int e^{-x} dx\right\}$	dM1	
	$-x^{2}e^{-x} - 2xe^{-x} + 2\int e^{-x}dx = -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} (+c)$	A1	
		(3)	
(c)	Total volume = $2 \times "100\pi" \int_0^{10} x^2 e^{-x} dx$	M1	
	$\int_{0}^{10} x^{2} e^{-x} = \left[-x^{2} e^{-x} - 2x e^{-x} - 2e^{-x} \right]_{0}^{10} = \left(-(10)^{2} e^{-10} - 2 \times 10e^{-10} - 2e^{-10} \right) - \left(-2 \right)$	M1	
	$=2-122e^{-10}$ (1.9944)	A1	
	Density = $\frac{5000}{"200\pi" \times "1.9944"}$	dM1	
	awrt 3.99 (g / cm ³)	A1	
		(5)	
	Notes	(10 marks)	
(a) M1: Forms	a correct unsimplified expression for the volume.		
A1: Achiev	ves $100\pi \int_0^{10} x^2 e^{-x} dx$ Condone a missing dx but limits must be present.		
(b) M1: Attem x^2	pts integration by parts in the right direction to achieve an expression of the form $e^{-x} \pm \dots \int xe^{-x} dx$ Condone missing dx		
dM1: Depe expr	endent on the previous method mark. Attempts integration by parts a second time to ach ession of the form $x^2e^{-x} \pmxe^{-x} \pm\int e^{-x} dx$ Condone missing dx	ieve an	
A1: $-x^2e^-$ For attemption rows with c	A1: $-x^2e^{-x} - 2xe^{-x} - 2e^{-x}$ (+ <i>c</i>) with or without the constant of integration For attempts via the DI (tabular) method, look for first two rows of the table to have correct forms for M1, all rows with correct forms and answer extracted for dM1 and A1 for correct answer.		
M1: A correct strategy to find the total volume with their values of k . M1: Substitutes the limits of 10 and 0 into their part (b) and subtracts. Alternatively allow M1 for limits 20 and 0 used (as a mistaken attempt to double). A1: $2-122e^{-10}$ or awrt 1.99			
dM1: Depe	dM1: Dependent on second M. Attempts to find the density using $\frac{5000}{\text{their Volume}}$. The attempt at the volume		
need not be correct but an attempt at using (b) must have been made. E.g. if they forget <i>k</i> or forget to double, allow for the attempt with their volume. Must be with 5000 in numerator, or with correct work to reach correct units later.			
A1: awrt 3	A1: awrt 3.99 (g / cm ³) oe. Accept exact simplified answers such as $\frac{5000}{200\pi(2-122e^{-10})}$		

Question	Scheme	Marks
9	For question 9 many variations on the proof are possible. Below is a general outline with some examples, which cover many cases. If you see an approach you do not know how to score, consult your team leader.M1: Will be scored for setting up an algebraic statement in terms of a variable (integer) k or any other variable aside n that engages with divisibility by 4 in some way and can	
	lead to a contradiction and is scored at the point you can see each of these elements. A formal statement of the assumption is not required at this stage. A1: Scored for a correct statement from which it is possible to draw a contradiction. dM1; For making a complete argument that leads to a (full) contradiction of the initial statement, though may be allowed if there are minor gaps or omissions. A1: Correct and complete work with contradiction drawn and conclusion made. There must have been a statement of assumption at the start for which to draw the contradiction, though it may not be technicality a correct assumption as long as a relevant assumption has been made. E.g. Accept "Assume $n^2 - 2$ is divisible be 4 for all n "	
9	(Assume that there is an <i>n</i> with $n^2 - 2$ is divisible by 4 so) $n^2 - 2 = 4k$	M1
	then $n^2 = 4k + 2 = 2(2k + 1)$ (so is even)	A1
	Hence n^2 is even so $n (=2m)$ is even hence n^2 is a multiple of 4 As n^2 is a multiple of 4 then $n^2 - 2 = 4m^2 - 2 = 2(2m^2 - 1)$ cannot be a multiple of 4 (as $2m - 1$ is odd) so there is a contradiction.	dM1
	So the original assumption has been shown false. Hence " $n^2 - 2$ is never divisible by 4" is true for all n *	A1*
		(4)
		(4 marks)
	Notes	
M1: Sets up with diassump $n^2 - 2$	p an algebraic statement in terms of a variable (integer) k or any other variable aside n that visibility by 4 in some way and can lead to a contradiction. No need for explicit statement ption - accept if just a suitable equation is set up. In this case supposing divisibility by 4 to = 4k	at engages at of by stating
A1: Reache dM1: For a long as	es $n^2 = 2(2k + 1)$ a complete argument that leads to a contradiction. See scheme. Allow if minor details are s the overall argument is clear.	omitted as
Accept exp	lanations such as "as n^2 is even then <i>n</i> is even hence n^2 is a multiple of 4 so $n^2 - 2$ calle of 4 (as 4 does not divide 2)"	nnot be a
A1*: Draws the contradiction to their initial assumption and concludes the statement is true for all <i>n</i> . There must have been a clear assumption at the start that is contradicted, and all working must have been correct. For the assumption be generous with the technicality as long as a relevant assumption has been made. E.g. Accept "Assume $n^2 - 2$ is divisible be 4 for all <i>n</i> "		
9	n^2-2	
Alt 1	(Assume that $n^2 - 2$ is divisible by 4 for some <i>n</i> ,) so $\frac{1}{4}$ is an integer. Then if <i>n</i> is even $n = 2m$ (<i>m</i> integer) so $\frac{n^2 - 2}{4} = \frac{(2m)^2 - 2}{4}$ (oe with odd)	M1
	$= m^2 - \frac{1}{2}$ (which is not an integer)	A1

	Since m^2 is an integer, $m^2 - \frac{1}{2}$ is not, hence <i>n</i> cannot be even, but if <i>n</i> is odd then $\frac{n^2 - 2}{4} = \frac{(2m+1)^2 - 2}{4} = m^2 + m - \frac{1}{4}$, which is again not an integer (since $m^2 + m$ is)	dM1
	Hence $(n^2 - 2)$ is never divisible by 4" is true for all $n = *$	A1*
		(4)
		(4 marks)
	Notes	
M1: Sets up with di assump 1 in $\frac{n}{2}$ A1: Reacher dM1: For a omittee A1*: Drawy have the as Acce	 M1: Sets up an algebraic statement in terms of a variable (integer) <i>m</i> or any other variable aside <i>n</i> that engages with divisibility by 4 in some way and can lead to a contradiction. No need for explicit statement of assumption - accept if just a suitable equation is set up. In this Alt, consider case use of n = 2m or n = 2m + 1 in <pre>m²-2</pre> i is sufficient A1: Reaches m² - ¹/₂ for <i>n</i> even or m² + m - ¹/₄ for <i>n</i> odd. dM1: For a complete argument that leads to a contradiction in both cases. See scheme. Allow if minor details ar omitted as long as the overall argument is clear. A1*: Draws the contradiction to their initial assumption and concludes the statement is true for all <i>n</i>. There must have been a clear assumption at the start that is contradicted, and all working must have been made. E.g.	
9 Alt 2	(Assume that $n^2 - 2$ is divisible by 4) $\Rightarrow n^2 - 2 = 4k$	M1
	$\Rightarrow n^2 = 4k + 2 \Rightarrow n = 2\sqrt{k + \frac{1}{2}} \text{ or } n = \sqrt{2}\sqrt{2k + 1}$	A1
	So for some integer $m \sqrt{k + \frac{1}{2}} = \frac{m}{2} \Rightarrow 2k + 1 = \frac{m^2}{2}$ but m^2 is odd if m is odd so $\frac{m^2}{2}$ not an integer, or m^2 is a multiple of 4 if m even, so odd=even or $2k + 1$ is odd, so does not have a factor 2 to combine with the $\sqrt{2}$ outside, hence n must be irrational	dM1
	Hence we have a contradiction.	A1*
	So " $n^2 - 2$ is never divisible by 4" is true for all n *	
		(4)
		(4 marks)
M1: Sets up an algebraic statement in terms of a variable (integer) k or any other variable aside n that engages with divisibility by 4 in some way and can lead to a contradiction. No need for explicit statement of assumption - accept if just a suitable equation is set up. In this case supposing divisibility by 4 by stating $n^2 - 2 = 4k$ A1: Reaches $n = 2\sqrt{k + \frac{1}{2}}$ or $n = \sqrt{2}\sqrt{2k + 1}$		

dM1: For a complete argument that leads to a contradiction. See scheme. Allow if minor details are omitted as		
long as the overall argument is clear. Must be a valid attempt to show that $2\sqrt{k+\frac{1}{2}} / \sqrt{2}\sqrt{2k+1}$ is not an		
integer, and this method is a hard route. A1*: Draws the contradiction to their initial assumption and concludes the statement is true for all <i>n</i> . There must have been a clear assumption at the start that is contradicted, and all working must have been correct. For the assumption be generous with the technicality as long as a relevant assumption has been made. E.g. Accept "Assume $n^2 - 2$ is divisible be 4 for all n "		
9 Alt 3	(Assume that $n^2 - 2$ is divisible by 4) then for <i>n</i> even we have (for some integer <i>m</i>) $n^2 - 2 = 4m^2 - 2$ or for <i>n</i> odd $n^2 - 2 = 4(m^2 + m) - 1$	M1
	$4m^2 - 2$ or $4(m^2 + m) - 1$	A1
	Since 4 divides $n^2 - 2$ and $4m^2$ thus for <i>n</i> even, 4 must divide 2, a contradiction, so <i>n</i> cannot be even, and also 4 divides $4(m^2 + m)$ so for <i>n</i> odd, 4 divides 1, also a contradiction.	dM1
	Hence we have a contradiction for both cases (and as <i>n</i> must be either even or odd). so " $n^2 - 2$ is never divisible by 4" is true for all <i>n</i> *	A1*
		(4)
		(4 marks)
	Notes	
M1: Sets up an algebraic statement in terms of a variable (integer) <i>m</i> or any other variable aside <i>n</i> that engages with divisibility by 4 in some way and can lead to a contradiction. No need for explicit statement of assumption - accept if just a suitable equation is set up. In this case supposing using <i>n</i> odd or <i>n</i> even to form an expression for $n^2 - 2$ of the form $4 \times \text{integer} \pm \text{non-mulitple of } 4$		
A1: Reaches $4m^2 - 2$ or $4(m^2 + m) - 1$		
 dM1: For a complete argument that leads to a contradiction. See scheme. Allow if minor details are omitted as long as the overall argument is clear. Both cases must be considered with a reason for the contradiction given (not just stated not divisible by 4). A1*: Draws the contradiction to their initial assumption and concludes the statement is true for all <i>n</i>. There must have been a clear assumption at the start that is contradicted, and all working must have been correct. For 		

the assumption be generous with the technicality as long as a relevant assumption has been made. E.g. Accept "Assume $n^2 - 2$ is divisible be 4 for all n"

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom